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A Neural Network Approach to Estimate Tropical
Cyclone Heat Potential in the Indian Ocean

M. M. Ali, P. S. V. Jagadeesh, I.-I. Lin, and Je-Yuan Hsu

Abstract—The tropical cyclone heat potential (TCHP) or the
available upper ocean thermal energy is one of the critical factors
in controlling the intensity of cyclones. Given the devastating im-
pacts Indian Ocean cyclones could bring (e.g., the “killer cyclone”
Nargis in 2008, which caused more than 130 000 deaths), there
is a pressing need to obtain reliable and more accurate TCHP
estimates over the Indian Ocean to improve the cyclone track and
intensity predictions. Using more than 25 000 in situ subsurface
temperature profiles during 1997–2007, this research explores the
possibility of developing an artificial neural network (ANN) model
to derive TCHP in the Indian Ocean using satellite-derived sea
surface height anomalies, sea surface temperature, and clima-
tological depth of 26 ◦C isotherm. The estimations have been
validated using more than 8000 independent in situ profiles during
2008–2009. The root-mean-square error and the scatter index of
this validation data sets are 14.6 kJ/cm2 and 0.2, respectively.
Comparison of the estimations from a two-layer reduced gravity
model and from a multiple regression method confirms the supe-
riority of the ANN approach over other methods.

Index Terms—Artificial neural networks, Indian Ocean, Tropi-
cal cyclone heat potential.

I. INTRODUCTION

ENERGY from the oceans is one of the critical factors
influencing the intensification of tropical cyclones (TCs).

DeMaria and Kaplan [1] and DeMaria [2] studied the rela-
tionship between cyclone intensity (CI) and sea surface tem-
perature (SST). After the sudden intensification of Hurricane
Opal when passing over a warm oceanic feature [3], the role
played by the upper ocean thermal structure has taken promi-
nence in cyclone intensification studies. Goni and Trinanes [4],
DeMaria et al. [5], Wada and Usui [6], Lin et al. [7]–[9],
Mainelli et al. [10], and Wada and Chan [11] emphasized the
importance of tropical cyclone heat potential (TCHP) in CI
predictions. Ali et al. [12], [13] studied the role of oceanic
eddies on cyclone intensification and track in the North Indian
Ocean. In addition to SST, TCHP, which is defined as the
heat content of the ocean integrated from surface to the 26 ◦C
isotherm [14], has been studied in regard to its possible relations
with TC intensity [4], [6]–[9] and [15]. Shay et al. [3] and
Scharroo et al. [16] suggested that, in addition to high SST, high
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TCHP is also required for intensifying cyclones. Lin et al. [9]
explored the role of high TCHP played in the rapid inten-
sification of the “killer” cyclone Nargis (2008) in the North
Indian Ocean. Soon after its rapid intensification over the high-
TCHP region, Nargis had landfall and resulted in more than
130 000 deaths [9]. Since the Indian coast has highly varying
bathymetry, even a slight error in predicting the landfall point
and intensity could lead to a totally different storm surge height.

Given the importance of TCHP in the intensity of Indian
Ocean cyclones, it is necessary to improve the accuracy of
the TCHP estimations to assist CI forecast and analysis [9],
[17]. The spatially and temporally limited availability of in situ
hydrographic observations constrains the estimation and mon-
itoring of TCHP on a regular basis, particularly over regions
of TC activity. Since the sea surface height anomaly (SSHA)
is strongly correlated with the thermal structure of the upper
ocean [3], [18], [19], TCHP can be estimated from this pa-
rameter over finer spatial and temporal scales. Details of the
estimation of TCHP from climatological temperature profiles,
SST, and SSHA observations using a two-layer reduced gravity
model are given in [3], [4], [18], and [20]. In addition to this
model, artificial neural networks (ANNs) are another possible
method to derive TCHP based on altimeter observations. The
ANN technique has proved its capability in the estimation of
various oceanic parameters and subsurface information such
as mixed and sonic layer depths from the surface observations
[21]–[24].

In this paper, we developed an ANN technique to estimate
TCHP using about 25 000 in situ temperature profiles, climato-
logical depth of 26 ◦C isotherm (D26c), and the collocated SST
and SSHA observations over the North Indian Ocean spanning
10 ◦S–25 ◦N latitude and 40 ◦E–100 ◦E longitude. SSHA repre-
sents the subsurface thermal structure, whereas SST represents
the heat energy at the surface. D26c provides the climatological
background over which changes take place. We validated the
results using more than 8000 independent in situ observations.
We also computed TCHP from a widely used two-layer reduced
gravity model and with the multiple regression method to
conclude the superiority of the ANN technique.

II. DATA AND METHODOLOGY

The data sets used in this study during 1997–2009 are:
1) quality-controlled in situ temperature profiles available from
all the platforms (e.g., expendable bathythermographs, profil-
ing floats, conductivity–temperature–depth profiles, and moor-
ings) in the World Ocean Database [25]; 2) weekly merged
SSHA product at 1/3◦ × 1/3◦ resolution obtained from AVISO
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Fig. 1. In situ observations used (a) in developing the ANN model and (b) for validation.

(Archiving, Validation and Interpretation of Satellite Oceano-
graphic data); and 3) three-day daily average SST at 0.25◦ ×
0.25◦ resolution from TMI (TRMM (Tropical Rainfall Mon-
itoring Mission) Microwave Imager). The location of in situ
data used in developing the ANN model (during 1997–2007)
and those used for validating the results (during 2008–2009)
are shown in Fig. 1.

Since TCHP is defined as the integrated heat content from
surface to the depth of 26 ◦C isotherm, all the profiles with SST
equal to or less than 26 ◦C are discarded. The depth of 26 ◦C is
linearly interpolated if a measurement at this temperature is not
available. TCHP (kJ/cm2) is estimated from all the available
temperature profiles following the equation [14]:

TCHP = ρCp

D26∫

0

(T − 26)dZ (1)

where ρ is the average density of the sea water, Cp is the specific
heat capacity at constant pressure, T is the temperature (◦C)
at each layer of dZ thickness, and D26 is the depth of 26 ◦C
isotherm.

SSHA and SST values are interpolated to the corresponding
in situ location and period using a simple linear interpolation
technique. Monthly climatology of D26c, at 1◦ × 1◦ spatial
resolution, is estimated from World Ocean Atlas 2009 [26].
The D26c value is also assigned to the collocated observations
depending upon the grid and month of the in situ observations.

A. ANN Approach

ANN is a massive parallel-distributed computer model con-
sisting of simple processing units called artificial neurons that
are the basic functioning units. The neural network formulation
is based on the fact that any parameterization of a process can be
considered as continuous (with finite discontinuities) mapping
(input versus output vector dependence), which is analogous to
atmospheric and ocean models with forcing and response. ANN
has been widely used in various meteorological, oceanographic,
atmospheric studies, and satellite remote sensing retrievals
[21]–[24], [27]–[32].

The ANN analysis requires three data sets: 1) training;
2) verification; and 3) validation. The training data set trains

the ANN model through several iterations. The verification data
set is used to validate the model during this process so that the
model does not over-fit during training. At this stage, the ANN
verifies whether the model developed for the training data set
holds good outside the training data range, in terms of root-
mean-square error (RMSE), and applies a midterm correction,
in case required. Thus, the training and verification data sets are
used to develop the model. The developed model is then stored
and used for estimating the output using the input parameters
from the data set marked for validation.

In the present analysis, we used multilayer perceptrons,
which are feedforward neural networks, with one input layer,
three hidden layer, and one output layer. We tried several mod-
els, and the present topology is selected based upon the least
error. The input (independent) parameters are SSHA, SST, and
D26c. The dependent parameter (output) is the TCHP estimated
from the in situ observations. Out of the 35 165 observations,
we used about 34% of the data set (11 812 observations) during
1997–2004 for training the ANN model, about 42% (14 916
sets) during 2005–2007 for verification, and 24% (8437 sets)
during 2008–2009 for validation of the predicted results. Thus,
the 24% of the data, marked for validation, were held back and
were not used in training the model.

B. TCHP Derivation from The Two-Layer Reduced
Gravity Model

We estimated TCHP, for the validation data set, by a
two-layer reduced gravity model originally proposed by
Goni et al. [18] and Shay et al. [3]. In this procedure, the depth
of 20 ◦C isotherm (D20) is estimated from SSHA by the two-
layer scheme as

D20(x, y, t)=D20(x, y)+
ρ2(x, y)

ρ2(x, y)−ρ1(x, y)
η′(x, y, t) (2)

where, D20 is the climatological depth of 20 ◦C isotherm
(D20) obtained from the temperature analysis of World Ocean
Atlas, ρ1 and ρ2 are the density of the upper (surface to D20)
and lower layer (D20 to ocean bottom), and η′ is SSHA. D26
is computed from derived D20 by using a climatological ratio
between D26 and D20. Once the depth of 26 ◦C is estimated
and SST obtained from satellite observations, the TCHP is the
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TABLE I
STATISTICS OF THE TRAINING, VERIFICATION, AND VALIDATION DATA SETS

excess heat contained above the 26 ◦C isotherm. The details
of this computation are given in [18]. Momin et al. [33] also
used a similar approach to get the heat content up to D20
using a regression relationship between SST and the upper layer
temperature based on historical Argo profiles.

C. TCHP Derivation From Multiple Regression Method

Using the training and selection data sets described in
Section II-A (26 728 observations), the following multiple re-
gression equation is obtained:

TCHP=−245.256+D26c∗0.533+SSHA∗0.369+SST∗0.279
(3)

where D26c is in m, SSHA in cm, and SST in ◦C.
TCHP values have been estimated using the input parameters

of the validation data set (8437 observations) using (3), and the
results were compared with the in situ estimations.

III. VALIDATION

Absolute error mean (AEM: average of absolute differences
between estimated and in situ values), absolute mean percent-
age error (AMPE: the percentage of the AEM to data mean),
standard deviation errors in estimations (ESD), standard devi-
ation (SD) ratio (SDR: ratio of ESD to data SD), RMSE, and
scatter index (SI: ratio of RMSE to mean of in situ observations)
for the training, verification, and validation data sets are shown
in Table I.

In this analysis, the AEM for the validation set is
11.6 kJ/cm2 for a range of 4.4–172.2 kJ/cm2 with a mean value
of 73.6 kJ/cm2. The RMSE for this data set is 14.6 kJ/cm2

with an SDR of 0.34 and an SI of 0.2, indicating the accuracy
of the estimations (see Table I). The scatter between the in situ
and ANN-estimated TCHP values is reasonably good with an
R of 0.81 (see Fig. 2). The histogram analysis (figure not
shown) of the data reveals that 80% of the estimations lie within
±20 kJ/cm2. Comparing the 8329 in situ and altimeter-derived
TCHP observations during 2002–2005, Mainelli et al. [10]
obtained an absolute error mean of 13.5 kJ/cm2 in the
Atlantic Ocean for a range of 0–150 kJ/cm2 with a mean
value of 41 kJ/cm2. Pun et al. [34] validated the altimetry-
derived upper ocean thermal structure in the western North
Pacific Ocean and obtained an RMSE of about 30 kJ/cm2.
Nagamani et al. [35] validated satellite-derived TCHP ob-
servations by National Oceanic and Atmospheric Adminis-
tration (NOAA)/Atlantic Oceanographic and Meteorological

Fig. 2. Scatter between the in situ and satellite-estimated TCHP (kJ/cm2) by
the ANN method.

laboratory (AOML) with in situ observations over the North
Indian Ocean during 1993–2009. They obtained an RMSE of
20.9 kJ/cm2.

The TCHP estimated from the two-layer reduced gravity
model for the validation data set has an absolute error mean
of 13.97 kJ/cm2 with an RMSE of 17.88 kJ/cm2. Similarly, the
TCHP estimated from the multiple regression has an absolute
error mean of 12.7 kJ/cm2 and an RMSE of 16.34 kJ/cm2.
Comparison of the ANN estimations with the above results sug-
gests that the satellite-derived TCHP using the ANN technique
can be conveniently used to estimate this parameter with better
accuracy compared with the two-layer reduced gravity model
and the multiple regression method in the North Indian Ocean.

IV. SUMMARY AND CONCLUSION

TCHP is one of the critical factors in controlling the intensity
of cyclones. In view of the limitations of the in situ temperature
profiles, satellite-derived estimations of this parameter is the
only solution to have a better spatial and temporal coverage
in regions such as the Indian Ocean where devastating cy-
clones frequently occur. Regional validation of any satellite
estimation is essential for an effective utilization. We estimated
TCHP by 1) an ANN technique, 2) a two-layer reduced gravity
model, and 3) a multiple regression technique and compared
the estimations with the in situ observations. Out of the three
methods, the ANN approach has given the best results. The
results suggest the utility of the ANN technique in estimating
TCHP with better accuracy in the North Indian Ocean that
certainly, in turn, helps in improving the cyclone track and
intensity predictions.
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